Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Genet. mol. biol ; 41(1,supl.1): 235-242, 2018. tab, graf
Article in English | LILACS | ID: biblio-892482

ABSTRACT

Abstract Domestication is of unquestionable importance to the technological revolution that has given rise to modern human societies. In this study, we analyzed the DNA and protein sequences of six genes of the oxytocin and arginine vasopressin systems (OXT-OXTR; AVP-AVPR1a, AVPR1b and AVPR2) in 40 placental mammals. These systems play an important role in the control of physiology and behavior. According to our analyses, neutrality does not explain the pattern of molecular evolution found in some of these genes. We observed specific sites under positive selection in AVPR1b (ω = 1.429, p = 0.001) and AVPR2 (ω= 1.49, p = 0.001), suggesting that they could be involved in behavior and physiological changes, including those related to the domestication process. Furthermore, AVPR1a, which plays a role in social behavior, is under relaxed selective constraint in domesticated species. These results provide new insights into the nature of the domestication process and its impact on the OXT-AVP system.

2.
Genet. mol. biol ; 40(1): 181-190, Jan.-Mar. 2017. tab
Article in English | LILACS | ID: biblio-892373

ABSTRACT

Abstract The FOXP subfamily is probably the most extensively characterized subfamily of the forkhead superfamily, playing important roles in development and homeostasis in vertebrates. Intrinsically disorder protein regions (IDRs) are protein segments that exhibit multiple physical interactions and play critical roles in various biological processes, including regulation and signaling. IDRs in proteins may play an important role in the evolvability of genetic systems. In this study, we analyzed 77 orthologous FOXP genes/proteins from Tetrapoda, regarding protein disorder content and evolutionary rate. We also predicted the number and type of short linear motifs (SLIMs) in the IDRs. Similar levels of protein disorder (approximately 70%) were found for FOXP1, FOXP2, and FOXP4. However, for FOXP3, which is shorter in length and has a more specific function, the disordered content was lower (30%). Mammals showed higher protein disorders for FOXP1 and FOXP4 than non-mammals. Specific analyses related to linear motifs in the four genes showed also a clear differentiation between FOXPs in mammals and non-mammals. We predicted for the first time the role of IDRs and SLIMs in the FOXP gene family associated with possible adaptive novelties within Tetrapoda. For instance, we found gain and loss of important phosphorylation sites in the Homo sapiens FOXP2 IDR regions, with possible implication for the evolution of human speech.

SELECTION OF CITATIONS
SEARCH DETAIL